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Starting from a many-body formulation that includes the phonon field, we develop a method of calculating 
the energy levels of an electron trapped at a defect in an ionic crystal. Detailed calculations for the F center 
are given. The higher excited states of the F center and the K absorption bands are also discussed. 

I. INTRODUCTION 

IN this paper we shall discuss a method of calculating 
the energy levels of the trapped electron in an ionic 

crystal. In particular, we shall consider in the formalism 
two types of traps, the F center and the interstitial ion. 

The presently accepted picture of the F center is the 
lattice-defect model in which an electron is trapped by 
a negative-ion vacancy. The F absorption band arises 
from the \s—2p transition of the trapped electron. The 
interstitial positive ion is also predicted to trap elec
trons, but there is little experimental work on this 
center. 

The energy levels and properties of these two kinds 
of traps have been discussed by Simpson1 and numerous 
other authors and are summarized in the works of Mott 
and Gurney,2 Seitz,3 and Gourary and Adrian.4 

We propose a new approach to the problem of the 
trapped electron which starts from the many-body 
point of view in the Hartree approximation and 
includes the electron-phonon interaction. 

The higher excited states of the F center are also dis
cussed; it is pointed out that the K absorption band 
may be associated with the transition from the ground 
state to its 3p state, and the highest true bound state 
may be viewed as a perturbation on the polaron 
problem. 

II. FORMALISM 

A point charge moving in a perfect ionic crystal with 
a rigid lattice would experience only the periodic elec
trostatic potential. This effect can be approximated by 
using an effective mass appearing in its kinetic energy. 
The remaining electrostatic forces are due to departure 
from perfect periodicity and rigidity of the lattice. 
Those include (a) the ion vacancies, impurities, and 
other type defects in the lattice; (b) temporary dis
placements of the ions in the crystal from their mean 
positions, due to thermal motion or the Coulomb field 
of the moving point charge. 

* Supported in part by The National Science Foundation. 
f On leave from The Tunghai University, Taiwan, China. 
1 J. H. Simpson, Proc. Roy. Soc. (London) A197, 269 (1949); 

A231, 308 (1955). 
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Crystals (Clarendon Press, Oxford, 1948). 
3 F . Seitz, Rev. Mod. Phys. 18, 384 (1946); 26, 7 (1954). 
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In the present discussion we are concerned only with 
a negative-ion vacancy or an interstitial ion and the 
trapped electron. If we include the temporary displace
ments of the ions produced by the Coulomb field of the 
moving point charge, the Hamiltonian of such a system 
is 

P2 

H=—+'£fo*kak*ok+H,l+Hei+H0e. (1) 
2m k 

The first term of (1) represents the kinetic-energy 
operator of the system of trap and electron, i.e., the 
negative-ion vacancy and its electron, or the positive 
point charge ze and its electron. For convenience, we 
will call the negative-ion vacancy or the positive point 
charge the trap center to distinguish it from the system 
of trap and electron, m is the reduced effective mass of 
the system of trap center plus electron. The second 
term is the phonon part of the Hamiltonian in which the 
zero-point energy is omitted, as we shall be mainly con
cerned with energy differences of the problems. It is 
written in terms of creation and annihilation operators 
for phonons of momentum k, a&* and ak, respectively. 
Hei represents the interactions between the trapped 
electron and the phonons; Hch the interaction between 
the trap center and the phonons; and Hec the inter
action of the trapped electron with the trap center. 

When the electron is moving in the region very close 
to the trap center, its electric field is almost completely 
shielded by the trap center. Furthermore, the electron 
moves relatively fast. Hence, the ions of the crystal do 
not follow the electronic motion and there is no tem
porary displacements of ions. Therefore, for this case 
the problem may be treated adiabatically and the 
second term in Eq. (1) vanishes since no phonons are 
created. On the other hand, when the electron is moving 
in the region far from the trap center, it moves relatively 
slowly compared to its motion when nearby. In this 
case, the ions can follow its movements and temporary 
displacements corresponding to acoustic and optical 
lattice vibration result. For this problem, only the long-
wavelength longitudinal optical modes are important. 

From considering these two cases, it seems reasonable 
to divide the crystal in two parts: one consisting of a 
spherical region of radius R with center at the trap 
center and the other consisting of the remaining part of 
the crystal. The radius R is taken as a parameter of the 
problem. 
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When the electron moves in the first region, the ions 
do not follow its motion. The Hamiltonian then consists 
of the kinetic energy plus the last three terms Hei, 
Hci, and Hec For this case we shall denote the sum of 
these three terms as Vo. On the other hand, when the 
electron moves in the second region the ions follow its 
motion. We shall treat this region as a dielectric 
medium. Then 

Hec=-ze2/ec/,r, (2) 

and the Hei and Hci can be written in the Frohlich 
forms, that is, 

Hel=Zk (V&^+Vfaftr*-*), (3) 

Hcl=-Zk(Vkak+Vk*ak*), (4) 

Vk=-i(2irze2tia>k/kWe*yt\ 

Here, we take the origin of position vectors at the trap 
center, r is the position vector of the electron, V is the 
volume of crystal, o)k is the frequency of the longitudinal 
optical modes, and l/e*=l/e00—l/es, where ê  and es 

are the optical and static dielectric constants for the 
crystal. 

Then the Hamiltonian H may be written as follows: 

p2 (Vo for r<R 

2m l£)*«ka**0*+L (Vkake
lk-x 

k k 

+ Vk*ak*e-*-')-Z (Vkak+Vk*ak*) 
k 

zec 

€ « / 

for r>R. (5) 

The wave function corresponding to Eq. (5) is given 
by 

¥ = * ( r ) $ , (6) 

where ^(r) and <J> are the wave functions of the trapped 
electron and the phonons, respectively. The phonon 
wave function <£ is written in the Hartree form 

$=nv(*), (7) 

where f(k) is the wave function of phonons of mo
mentum k. 

To determine the one-phonon wave function f(k), we 
assume that the electron-phonon interaction is a small 
perturbation on the lattice energy. Furthermore, we 
average this interaction over the electronic motion to 
give a interaction energy which depends on the phonon 
coordinate alone. In this averaging, a fraction of the 
electronic charge is outside the spherical region of 
radius R. Thus, the electric field of the F center may 
not be completely shielded and ions in the crystal 
display displacements from their mean positions to 
interact with the F center, in other words, the ions 
follow the electronic motion. This will not give a large 
error to the final result, because the electronic part 
plays an important role in this problem. It is to be em

phasized, however, that the approximation of averaging 
over electronic motion to find an average electron-
phonon interaction is used only to find an approxima
tion of f(k), and is not used elsewhere. 

Then the one-phonon wave function may be de
termined from perturbation theory. To first order this 
gives 

f(k) = Nk\l - ( ^ * _ i ) a t * l | o > . (8) 
L fio)k J 

Here |0) represents the phonons' vacuum state and 
<pk is given by 

<Pk= /^*(r )^( r )e i k -^V. (9) 

Nk is a normalization factor of f(k) and, since the 
crystal volume is large, we take Nk as approximately 
unity. 

Using these phonon functions, the effective Hamil
tonian for the system of electron and trap center is 

P2 \V0 for r<R 

2m [ ($, Y, ?io>kak*ak$) 

+ (^E(n^k-r+c.c.)$) 
k 

ze2 

- < * , £ (Vkak+Vk*ak*)$) 
k t«? 

for r>R. (10) 

In evaluating this, the summation over k was re
placed by an integration as is the usual procedure. In 
most cases, for the present problems the integrals are 
rapidly convergent as k increases and &max, which equals 
w/a, can be replaced by infinity. The energy level of the 
trapped electron is 

III. THE F CENTER 

(11) 

For the F center we make the assumption that the 
negative-ion vacancy may be considered as having an 
effective charge of plus unity. From the previous work,5 

the effective potential for the F center, that is, Vo in 
Eq. (10) is 

Me* e2 / 1 \ 

d Ro\ ej 

M is the Madelung constant for the particular ionic 
crystal and d is the nearest-neighbor distance, ê  is the 
optical dielectric constant and R0 is the radius of a 
spherical region in which electronic polarizability is 
important, but ionic polarization is negligible. The 

5 S. R. Tibbs, Trans, Faraday Soc. 35, 1471 (1939). 
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value of RQ is given approximately by Mott and 
Gurney6 as j?(p^0.9 d. 

The first term of Eq. (12) represents the interaction 
energy between the ions neighboring the negative-ion 
vacancy and the F-center electron at the center of the 
vacancy. The second term is the energy gained from the 
polarization of the medium surrounding the negative-
ion vacancy when the F-center electron is removed. 

To simplify the calculations we choose a value of R. 
A reasonable choice is to take R=Ro, since they are 
defined in essentially the same way. 

Two methods have been used to form F-center wave 
functions. They are the vacancy-centered (VC4) 
method and the linear combination of the atomic orbi-
tals (LCAO) method.4 In the VC method the wave 
functions are approximated by simple functions 
centered at the negative-ion vacancy, while in the 
LCAO method a linear combination of wave functions 
centered on the ions neighboring the vacancy is used. 
To illustrate the present technique we choose the 
simplest trial wave function used in the VC method. 

We choose for the ground-state trial wave function a 
modified hydrogen-like function which is 

effective Hamiltonian for this state is 

^1==(X3/77r)1/2(l+Xf)e-x% (13) 

where X is a variational parameter. The trial wave 
function Eq. (13) yields an effective Hamiltonian for 
the ground state. I t is 

iHeii — 1-
2m 

-Me2 e2 

R 

e2 / 5373 1 

for r<R 

^25088 e^r 3e*r 

„2 „-2Ar , 1 7 23 1 
H XH XV2+-XV3 :C 28 42 7 

for r>R. (14) 

The quantity a is twice the nearest-neighbor distance. 
Therefore, the ground-state energy Eu is given by 

Eu=(\l/h iHe{tf/i). (15) 

Minimizing Eu by varying the parameter X, we find the 
energy level Eu. 

The trial wave function for the excited 2p state is 
chosen as 

/ / 3 5 v l / 2 

^ 2 = ( ~ I rtrP* cos0, (16) 

where 0 is the polar angle of the position vector of the 
electron r. Using the wave function of Eq. (16), the 

2j9
reff = h 

2m 

-Me2 e2 

Ri (4) for r<R 

e2 / 81 1 

j: 
Xe~W 

Then the 2p state energy is 

0%2 /-Me2 e2 

' 81 1 \ e6 e* 

—P-) +— 
,512 a/ e^r e*r 

/ 5 11 \ 
-p2r2+p*r* 

for r>R. (17) 

E<iv — h 
\ d R0\ eJJ 2m \ d Ro' 

X{l-h~2^(2^R0
A+^Ro"+6l32Ro2+6l3Ro+S)} 

e2 

Pe-2PR«(WR0
3+6i32Ro2+6(3Ro+3) 

?2 / 81 1\ 

e*\512 a) 

e2 ( 81 \\ 
+—( 0 — )e-2^(2l3iRoAJrWRo^ 

+6(32Ro2+6l3Ro+3) 

e2 

+-pe~^Ro(A^Roe+B^RQ
5+C^Ro' 

+DpR<?+El32Ro2+F!3Ro+G). (18) 

The coefficients A, B,C, • • • , G are real numbers. 
In this problem, the F-center electron in its ground-

state polarizes the lattice so that it experiences a self-
consistent potential which includes a potential due to 
lattice. The term self-consistent here means that the 
potential is determined by the electronic wave function 
and the wave function by the potential. In addition, 
the frequency concerned in the optical transition is very 
much higher than that of the longitudinal optical mode. 
Therefore, during the optical transition (from the 
ground state to the higher state), the lattice does not 
change. In other words, the optical transitions occur 
according to the Franck-Condon principle. Once the 
optical transition is made, the electronic wave function 
is no longer a ground-state function so the lattice begins 
to relax. In view of these facts, for the actual optical 
transition case the effective Hamiltonian for the 
excited electron is the same as for the ground state, 
namely, Eq. (14). The "optical" 2p energy level to 
which the Is —* 2p transition is just made is, therefore, 
different from that calculated by Eq. (18) in which 
lattice relaxation is involved. We denote the energy of 
the "optical*' 2p state as 0E2p. I t is given by 

A p a f c lfleff^). (19) 

6 See Ref. 2, p. 58. In the expression for the energy level of the oE^y the 
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TABLE I. Energy levels and constants for an F center. 

m/me d(A) M (eV) 
Eiy 
(eV) 

oEiv 

(eV) 
-e*/e* 

(eV) 
o[A£is_2p]th 

(eV) 
[A£is_2p]oi 

(eV) 

NaCl 
KCl 

2.81 
3.14 

1.74756 
1.74756 

2.25 
2.13 

5.62 
4.68 

-2.60 
-2.31 

-0.49 
-0.52 

-0.35 
-0.39 

-0.69 
-0.52 

2.25 
1.92 

2.70 
2.30 

factor corresponding to [(81/512)0— 1/a] in Eq. (18) 
is[(5373/25088)X-l/a]. 

In Sec. IV we shall show that —e2/e*a is the energy 
of the lowest state of the conduction band. Thus, the 
energy level with respect to the bottom of the conduc
tion band is Ef=E+e2/e*a. The theoretical results for 
E'u, Ef2P, and 0£'22>, as calculated for NaCl and KCl, 
are summarized in Table I. The values of the constants 
used are also given. The calculated energy difference 
between the optical 2p state and the ground state, 
0[AEis_2p]th, is given and compared with the experi
mentally observed value [AZ£is_2 Jobs. 

IV. HIGHER STATES OF AN F CENTER 

The 3p state of an F center is one of the interesting 
higher states. The trial wave function ^3 for this state 
is chosen as 

^3= (2\*/3ir)ll2(2-\r)r(r*r cos0. (20) 

Using the effective Hamiltonian given by Eq. (14) 
and the wave function of Eq. (20) we get the optical 
energy level 0E3p, corresponding to the 3p state. The 
theoretical results of 0Ezp and Eu for KCl and NaCl are 
given in Table II. The theoretical transition energies 
for the ls—3p transition of the F center are also given 
and compared with the experimental frequency (ex
pressed as transition energy) of the K band in KCl. In 
view of this calculation, the K band may be associated 
with a transition from the ground state of an F center 
to its 3p state. 

The energy level of the ground state or Eiv of the 
F center has the asymptotic value — e2/e*a, if the vari
ational parameter approaches zero. A similar behavior 
is to be expected for the higher energy states. Now in 
the highest state we expect diffuse wave function cor
responding to a small value of the variational parameter 
in the wave function. Hence, the energy of the highest 
true bound state (i.e., the highest state after lattice 
relaxation) approaches the asymptotic value —e2/e*a 
as a limit of the energy-level series for the true bound-
state case. 

TABLE II . Energy levels for 1$ and 3p states of the F center. 

Eu 
(eV) 

KCl -2 .83 
NaCl -3 .29 

oEsp 
(eV) 

-0 .47 
-0 .37 

o[AEis_3p]th AE(Kband) 
(eV) (eV) 

2.36 2.71 
2.92 

For KCl and NaCl the values of these limits are, re
spectively, 0.52 and 0.69 eV. These are the energies of 
the lowest state of the conduction band. This is reasona
ble since when the variational parameter X in the trial 
wave function is very small, the factor e~Xr approaches 
unity which is the same as the exponential factor for a 
plane-wave electron of zero momentum. In fact, for the 
highest true bound state in which the electron is far 
away from the negative-ion vacancy, the Coulomb 
interaction in Eq. (5) is small compared with the 
electron-phonon interaction; the term VQ may not be 
considered important. Hence, the effective Hamiltonian 
becomes the polaron Hamiltonian plus a small pertur
bation — e2/er, that is, 

2m h k 
e2 

+ Vk*ak*e-*") . (21) 
er 

Here the last two terms, i.e., the interactions Hci and 
Hec in Eq. (5) are replaced by —e2/er. The effective di
electric constant e is larger than ê  due to Hci contribut
ing a small positive energy. Thus, we picture the highest 
true bound state of an F center as lying very close to the 
bottom of the conduction band, but never above it. 

On the other hand, for the actual optical transition 
case, the energy of the highest state approaches the 
asymptotic value (e2/e*)[(5373/25088)A--l/a], where 
X is a variational parameter corresponding to the 
ground state. For KCl and NaCl, these asymptotic 
values are almost the same. It is approximately +0.1 
eV with respect to the zero energy, i.e., the optical 
highest states for KCl and NaCl lie 0.62 and 0.79 eV 
above the bottom of the conduction band, respectively. 

V. DISCUSSION 

Our predictions for the Is and 2p energy level under
estimate the F-band transition energy. This is the same 
as previous works in the variational method, for 
example, Simpson's work.1 He also uses a self-consistent 
method to consider the lattice interaction with an 
F-center electron in different way. 

Probably the underestimation of the F-band tran
sition energy arises mainly from the ground-state wave 
function used in this calculation. Since the potential 
energy of an F-center electron is Coulomb-like only for 
the electron at distances greater than Ro, the modified 
hydrogen-like trial wave function is not a good approxi-
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mation for the ground state. In view of the previous 
studies,5,7 the use of a Bessel-like wave function for 
r<Ro and a modified hydrogen-like function for r>R0 

may lead to a ground-state energy lying below the one 
predicted by using just a hydrogen-like function. 

For the excited states, the modification of the Bessel-
like wave function leads to a negligible change in the 
energy levels, since the F-center electron spends most of 
its time in the Coulomb-like potential region. Hence, 
the choice of a hydrogen-like function for the 2p or 
the other higher state is expected to be a good 
approximation. 

Consequently, the approach to the problem of the 
trapped electron, which includes phonons and phonon-
electron interactions does raise the predicted position 

7 J. A. Krumhansl and N. Schwartz, Phys. Rev. 89,1154 (1953). 

THAT the magnetic behavior of hard superconduct
ing tubes in a longitudinal field H, can be de

scribed in terms of a single model depending on the con
cept of a critical state,1 and a field-dependent critical 
current density, j c , where 

jo=a/(H+B0), (1) 

has been shown by Kim, Hempstead, and Strnad.2 In 
(1), a and Bo are constants depending on the tempera-

* The research reported in this paper was sponsored by the 
Electronic Technology Laboratories, Aeronautical Systems 
Division, Air Force Systems Command, Wright Patterson Air 
Force Base, Ohio, under Contract AF33 (657)7733. 

1 C. P. Bean, Phys. Rev. Letters 8, 250 (1962). 
2 Y. B. Kim, C. F. Hempstead, and A. R. Strnad, Phys. Rev. 

129, 528 (1963). 

of the energy level of a trapped electron relative to 
previous calculations and can bring the position of the 
energy level into line with recent experiment,8 due to a 
small quantity of positive energy contributed by the 
phonons. 
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ture and the properties of the medium. Anderson3 has 
shown that (1) can be obtained in terms of flux penetra
tion through the specimen4,5 and the Lorentz force ex
erted on a flux bundle by the current. When a pinning 
force on a flux bundle is exceeded, either the phenomena 
of flux creep or quenching can occur.1'6 

In the magnetization experiments of Kim et al.2 the 
current and field are perpendicular to each other, and 
the current is internally generated. An important ques
tion concerns the extension of the above ideas to linear 
geometries where current is externally supplied. Apart 
from the practical significance of these geometries there 

3 P. W. Anderson, Phys. Rev. Letters 9, 309 (1962). 
4 A. A. Abrikosov, Zh. Eksperim. i Teor. Fiz. 32, 1442 (1957) 

[translation: Soviet Phys.—JETP 5, 1174 (1957)]. 
5 B . B. Goodman, IBM J. Res. Develop. 6, 63 (1962). 
6 C . J. Gorter, Nuovo Cimento 6, Suppl. 3, 1168 (1957). 
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Measurements have been made on the critical current of NbsSn vapor-deposited strips on ceramic material. 
The Nb3Sn was obtained from vapor deposition and is single phase without any preferred orientation in the 
plane of the strip. Critical currents were obtained at 4.2°K as a function of field up to 20 000 G, and as a 
function of the angle between the field and the current axis. Below 10 000 G a sharp rise in critical current by 
about a factor of two was observed for longitudinal fields, and a gradual decrease in critical current for 
transverse fields. Above 10 000 G the field and angular dependence is in good agreement with the predictions 
of the Lorentz force model of Kim et al. Below 10 000 G, the field dependence can be associated with a 
transition from an inhomogeneous to homogeneous current distribution with consequent lower local critical 
current densities. Experimental results are also reported for field shielding measurements on similar material 
in cylindrical form. Excellent agreement is obtained in both magnitude and field dependence with the strip 
data. 


